Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Probiotics Antimicrob Proteins ; 15(2): 411-423, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36534210

RESUMO

Kefir is a probiotic mixture with anxiolytic and antioxidant properties. Chronic stress can lead to anxiety disorders and increase oxidative damage in organs such as the heart and kidney. In this study, we examined whether kefir ameliorates the anxiety-like behavior of mice submitted to chronic unpredictable stress (CUS) by modulating brain-derived neurotrophic factor (BDNF) and corticosterone levels and whether kefir modifies the oxidative parameters in the heart and kidney of mice. Male Swiss mice received kefir (0.3 mL/100 g/day) or milk for 30 days (gavage). On the 10th day, the mice were submitted to CUS. Behavioral analysis was performed using the elevated plus maze and forced swimming tests. BDNF levels were analyzed in brain tissues. Heart and kidney superoxide dismutase (SOD), catalase, glutathione (GSH), thiobarbituric acid reactive substances (TBARS), 3-nitrotyrosine, metalloproteinase-2 (MMP-2), and plasma corticosterone were evaluated. Kefir reverted the CUS-induced decrease in the time spent in the open arms, the increase in grooming frequency, and decrease in the head dipping frequency, but not the reduced immobility time. CUS decreased the cerebellum BDNF levels and increased corticosterone levels, which were restored by Kefir. Neither catalase and SOD activities nor GSH, TBARS, 3-nitrotyrosine, and MMP-2 were modified by CUS in the heart. In the kidney, CUS increased 3-nitrotyrosine and MMP-2. Kefir increased the antioxidant defense in the heart and kidney of control and CUS mice. These results suggest that kefir ameliorated CUS-induced anxiety-like behavior by modulating brain BDNF and corticosterone levels. Kefir also increased the antioxidant defense of mice heart and kidney.


Assuntos
Antioxidantes , Kefir , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Corticosterona/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , Rim/metabolismo , Superóxido Dismutase , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças
2.
Int J Dev Neurosci ; 82(8): 759-771, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36018565

RESUMO

Nicotine has been used during pregnancy and lactation as a tobacco harm reduction strategy. However, it is unclear whether nicotine exposure during a critical development period negatively impacts stress responses in adulthood. This study investigated how nicotine, administered via breastfeeding, affects the brain-derived neurotrophic factor (BDNF), synaptic proteins levels, and anxiety-like behavior in adult female mice subjected to stress. Female Swiss mice were exposed to saline or nicotine (8 mg/kg/day) through breastfeeding between their fourth and 17th postnatal days (P) via implanted osmotic mini pumps. The unpredictable chronic mild stress (UCMS) protocol was performed during their adulthood (P65) for 10 consecutive days, followed by the elevated plus maze (EPM) test 1 day after the protocol. Animals were euthanized and their blood, collected for plasma corticosterone measurements and their brain structures, dissected for BDNF and synaptic proteins analyses. We found no significant differences in corticosterone levels between groups (Saline/Non-stress, Nicotine/Non-stress, Saline/Stress, and Nicotine/Stress). The UCMS protocol hindered weight gain. Mice exposed to nicotine through breastfeeding with or without the UCMS protocol in adulthood showed higher grooming and head dipping frequency; decreased BDNF levels in cerebellum and striatum; increased postsynaptic density protein 95 (PSD-95), synapsin I, and synaptophysin levels in cerebellum; and decreased PSD-95 and synapsin I levels in brainstem. Our results indicate that nicotine exposure through breastfeeding leads to long-lasting behavioral effects and synaptic protein changes, most of which were independent of the UCMS protocol, even after a long nicotine-free period, highlighting the importance of further studies on nicotine exposure during development.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Corticosterona , Gravidez , Animais , Camundongos , Feminino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapsinas/metabolismo , Encéfalo/metabolismo , Nicotina , Estresse Psicológico
3.
Behav Brain Res ; 416: 113546, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34437939

RESUMO

Alcohol use disorder needs more effective treatments because relapse rates remain high. Psychedelics, such as ayahuasca, have been used to treat substance use disorders. Our study aimed to evaluate the effects of ayahuasca on ethanol-induced behavioral sensitization (EIBS). Swiss mice received 2.2 g/kg ethanol or saline IP injections every other day across nine days (D1, D3, D5, D7, and D9), and locomotor activity was evaluated 10 min after each injection. Then, animals were treated daily with ayahuasca (corresponding to 1.76 mg/kg of N,N-dimethyltryptamine, DMT) or water by oral gavage for eight consecutive days. On the seventh day, mice were evaluated in the elevated plus maze. Then, mice were challenged with a single dose of ethanol to measure their locomotor activity. Dopamine receptors, serotonin receptors, dynorphin, and prodynorphin levels were quantified in the striatum and hippocampus by blot analysis. Repeated ethanol administration resulted in EIBS. However, those animals treated with ayahuasca had an attenuated EIBS. Moreover, ayahuasca reduced the anxiogenic response to ethanol withdrawal and prevented the ethanol-induced changes on 5-HT1a receptor and prodynorphin levels in the hippocampus and reduced ethanol effects in the dynorphin/prodynorphin ratio levels in the striatum. These results suggest a potential application of ayahuasca to modulate the neuroplastic changes induced by ethanol.


Assuntos
Banisteriopsis/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Bebidas , Etanol/farmacologia , Alucinógenos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Alucinógenos/administração & dosagem , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...